Intel® Next Generation Microarchitecture Codename Haswell: New Processor Innovations

Bob Valentine, Sr. Principal Engineer, Intel
Agenda

• Introduction
• Intel® Microarchitecture (Haswell): Core
• Haswell: Cache Hierarchy and Interconnects
• Haswell: Power Management
• Wrap Up
Agenda

• Introduction
• Intel® Microarchitecture (Haswell): Core
• Haswell: Cache Hierarchy and Interconnects
• Haswell: Power Management
• Wrap Up
Haswell builds upon innovations in the 2nd and 3rd Generation Intel® Core™ i3/i5/i7 Processors (Sandy Bridge and Ivy Bridge)
Haswell “Philosophy”

Converged core, Scalable Platform

1. Converged core, Scalable Platform

2. More performance per core
 - Single Thread Instructions Per Cycle (broad workload mixture)
 - 2004 to 2013

3. Flat or decreasing power envelopes
 - Power Envelopes for Comparable Segments
 - Mainstream
 - Lowest

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance

Intel® Microarchitecture (Haswell)
Sandy Bridge (Tock): Recap

Next Generation Intel® Turbo Boost Technology

High Bandwidth Last Level Cache

Processor Graphics and Media

Embedded DisplayPort* (DP)

Discrete Graphics Support: 1x16 or 2x8

Energy Efficiency

Stunning Performance

CPU, Graphics, MC, PCI Express* On Single Chip

High BW/low-latency modular core/Graphic interconnect

Substantial performance improvement

Intel® Advanced Vector Extension (Intel® AVX)

Integrated Memory Controller 2ch DDR3

Intel® Hyper-Threading Technology
4 Cores / 8 Threads
2 Cores / 4 Threads
Ivy Bridge (Tick): Recap

- Built on Sandy Bridge Microarchitecture
- 22nm Process Technology
- Next Generation Processor Graphics and Media (Microsoft* DirectX*11)
- Intel® Secure Key (Digital Random Number Generator)
- Solid performance improvement per core
- Intel® Advanced Vector Extensions (Intel® AVX) 16-bit floating point format
- Intel® OS Guard (Supervisor Mode Execution Protection)
- Socket compatibility with Sandy Bridge

3rd Generation Intel® Core™ Microarchitecture (Ivy Bridge)
On to Haswell microarchitecture...
Agenda

• Introduction

• **Intel® Microarchitecture (Haswell): Core**
 – Compute innovation and Intel® AVX2
 – Enhanced security primitives
 – Synchronization improvements and Intel® TSX
 – Virtualization performance and EPT

• Haswell: Cache Hierarchy and Interconnects

• Haswell: Power Management

• Wrap Up
Haswell Core at a Glance

Next generation branch prediction
• Improves performance and saves wasted work

Improved front-end
• Initiate TLB and cache misses speculatively
• Handle cache misses in parallel to hide latency
• Leverages improved branch prediction

Deeper buffers
• Extract more instruction parallelism
• More resources when running a single thread

More execution units, shorter latencies
• Power down when not in use

More load/store bandwidth
• Better prefetching, better cache line split latency & throughput, double L2 bandwidth
• New modes save power without losing performance

No pipeline growth
• Same branch misprediction latency
• Same L1/L2 cache latency
Haswell Buffer Sizes

Extract more parallelism in every generation

<table>
<thead>
<tr>
<th></th>
<th>Nehalem</th>
<th>Sandy Bridge</th>
<th>Haswell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-of-order Window</td>
<td>128</td>
<td>168</td>
<td>192</td>
</tr>
<tr>
<td>In-flight Loads</td>
<td>48</td>
<td>64</td>
<td>72</td>
</tr>
<tr>
<td>In-flight Stores</td>
<td>32</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td>Scheduler Entries</td>
<td>36</td>
<td>54</td>
<td>60</td>
</tr>
<tr>
<td>Integer Register File</td>
<td>N/A</td>
<td>160</td>
<td>168</td>
</tr>
<tr>
<td>FP Register File</td>
<td>N/A</td>
<td>144</td>
<td>168</td>
</tr>
<tr>
<td>Allocation Queue</td>
<td>28/thread</td>
<td>28/thread</td>
<td>56</td>
</tr>
</tbody>
</table>
Haswell Execution Unit Overview

Unified Reservation Station

Port 0
- Integer ALU & Shift
- FMA FP Multiply
- Vector Int Multiply
- Vector Logicals
- Branch
- Divide
- Vector Shifts

Port 1
- Integer ALU & LEA
- FMA FP Multi
- FP Add
- Vector Int ALU
- Vector Logicals

Port 2
- Load & Store Address

Port 3
- Store Data

Port 4
- Integer ALU & LEA

Port 5
- Integer ALU & Shift

Port 6
- Vector Shuffle

Port 7
- Store Address

2xFMA
- Doubles peak FLOPs
- Two FP multiplies benefits legacy

4th ALU
- Great for integer workloads
- Frees Port0 & 1 for vector

New Branch Unit
- Reduces Port0 Conflicts
- 2nd EU for high branch code

New AGU for Stores
- Leaves Port 2 & 3 open for Loads

Intel® Microarchitecture (Haswell)
Haswell New Compute Instructions

• Intel® Advanced Vector Extensions 2 (Intel® AVX2)
 - Includes
 ▪ 256-bit Integer vectors
 ▪ FMA: Fused Multiply-Add
 ▪ Full-width element permutes
 ▪ Gather
 - Benefits
 ▪ High performance computing
 ▪ Audio & Video
 ▪ Games

• New Integer Instructions
 - Indexing and hashing
 - Cryptography
 - Endian conversion – MOVBE

• Full Instruction Specification Available at: http://software.intel.com/en-us/avx

<table>
<thead>
<tr>
<th>Group</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Field Pack/Extract</td>
<td>BZHI, SHLX, SHRX, SARX, BEXTR</td>
</tr>
<tr>
<td>Variable Bit Length Stream Decode</td>
<td>LZCNT, TZCNT, BLSR, BLSMSK, BLSI, ANDN</td>
</tr>
<tr>
<td>Bit Gather/Scatter</td>
<td>PDEP, PEXT</td>
</tr>
<tr>
<td>Arbitrary Precision Arithmetic & Hashing</td>
<td>MULX, RORX</td>
</tr>
</tbody>
</table>
• 2 new FMA units provide 2x peak FLOPs/cycle of previous generation

• 2X cache bandwidth to feed wide vector units
 – 32-byte load/store for L1
 – 2x L2 bandwidth

• 5-cycle FMA latency same as an FP multiply

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.
Core Cache Size/Latency/Bandwidth

<table>
<thead>
<tr>
<th>Metric</th>
<th>Nehalem</th>
<th>Sandy Bridge</th>
<th>Haswell</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Instruction Cache</td>
<td>32K, 4-way</td>
<td>32K, 8-way</td>
<td>32K, 8-way</td>
</tr>
<tr>
<td>L1 Data Cache</td>
<td>32K, 8-way</td>
<td>32K, 8-way</td>
<td>32K, 8-way</td>
</tr>
<tr>
<td>Fastest Load-to-use</td>
<td>4 cycles</td>
<td>4 cycles</td>
<td>4 cycles</td>
</tr>
<tr>
<td>Load bandwidth</td>
<td>16 Bytes/cycle</td>
<td>32 Bytes/cycle (banked)</td>
<td>64 Bytes/cycle</td>
</tr>
<tr>
<td>Store bandwidth</td>
<td>16 Bytes/cycle</td>
<td>16 Bytes/cycle</td>
<td>32 Bytes/cycle</td>
</tr>
<tr>
<td>L2 Unified Cache</td>
<td>256K, 8-way</td>
<td>256K, 8-way</td>
<td>256K, 8-way</td>
</tr>
<tr>
<td>Fastest load-to-use</td>
<td>10 cycles</td>
<td>11 cycles</td>
<td>11 cycles</td>
</tr>
<tr>
<td>Bandwidth to L1</td>
<td>32 Bytes/cycle</td>
<td>32 Bytes/cycle</td>
<td>64 Bytes/cycle</td>
</tr>
<tr>
<td>L1 Instruction TLB</td>
<td>4K: 128, 4-way 2M/4M: 7/</td>
<td>4K: 128, 4-way 2M/4M: 8/</td>
<td>4K: 128, 4-way 2M/4M: 8/</td>
</tr>
<tr>
<td></td>
<td>thread</td>
<td>thread</td>
<td></td>
</tr>
<tr>
<td>L1 Data TLB</td>
<td>4K: 64, 4-way 2M/4M: 32,</td>
<td>4K: 64, 4-way 2M/4M: 32,</td>
<td>4K: 64, 4-way 2M/4M: 32,</td>
</tr>
<tr>
<td></td>
<td>4-way 1G: fractured</td>
<td>4-way 1G: 4, 4-way</td>
<td>4-way 1G: 4, 4-way</td>
</tr>
<tr>
<td>L2 Unified TLB</td>
<td>4K: 512, 4-way</td>
<td>4K: 512, 4-way</td>
<td>4K+2M shared: 1024, 8-way</td>
</tr>
</tbody>
</table>

All caches use 64-byte lines
Enhanced Security Primitives

Cryptography protects nearly all data and transactions you want to keep secure.

Haswell’s microarchitecture improvements and new instructions enable substantial gains in cryptography.
Synchronization Improvements

- **Improving existing primitives**
 - Faster LOCK-prefixed instructions
 - A focus in recent generations

- **Locks still limit concurrency**
 - Lock-protected critical sections
 - Needed for threading correctness
 - Tradeoff: correctness vs. performance

- **Intel® TSX**
 - Target lock granularity optimizations
 - Lock Elision
 - Execute without acquiring locks
 - Performance of fine-grained locks with effort of coarse-grained locks

Intel® TSX exposes parallelism through Lock Elision
A Canonical Intel® TSX Execution

Thread 1

Acquire
Critical section
Release

Thread 2

Acquire
Critical section
Release

Hash Table

Lock remains free throughout

No serialization and no communication if no conflicts
Transactional Synchronization

• **Intel® TSX: Instruction set extensions for IA**
 - Transactionally execute lock-protected critical sections
 - Execute without acquiring lock → expose hidden concurrency
 - Hardware manages transactional updates – All or None
 ▪ Other threads can’t observe intermediate transactional updates
 ▪ If lock elision cannot succeed, restart execution & acquire lock

• **Efficient implementation eases developer enabling**
 - Simple and clean ISA interface for software developers to use
 - Competitive to typical uncontended critical sections
 - Designed to support typical critical sections transactionally
 - Hardware efficiently manages register and memory state

Developer-friendly implementation
Intel® TSX Interfaces for Lock Elision

• **Hardware Lock Elision (HLE) – XACQUIRE/XRELEASE**
 – Software uses legacy compatible hints to identify critical section. Hints ignored on hardware without TSX
 – Hardware support to execute transactionally without acquiring lock
 – Abort causes a re-execution without elision
 – Hardware manages all architectural state

• **Restricted Transactional Memory (RTM) – XBEGIN/XEND**
 – Software uses new instructions to specify critical sections
 – Similar to HLE but flexible interface for software to do lock elision
 – Abort transfers control to target specified by XBEGIN operand
 – Abort information returned in a general purpose register (EAX)

• **XTEST and XABORT – Additional instructions**
Virtualization on Haswell with Intel® VT

- Substantially improved guest/host transition times
- New *Accessed* and *Dirty* bits for Extended Page Tables (EPT) eliminates major cause of vmexits
- Overhauled TLB invalidations – lower latency, less serialization
- New VMFUNC instruction enables hyper-calls without a vmexit
- Intel® VT-d adds 4-level page walks to match Intel® VT-x

![Graph: Intel VT-x Roundtrip over Generations]

Haswell reduces round-trip to <500 cycles
Haswell Performance Monitoring Highlights

Precise Event-Based Sampling (PEBS) Enhancements

• New EventingIP entry for data profiling
• Data Linear Address provided for all PEBS memory events
 – Statistical memory address profiling outside of a debug environment

New Features Addressing Developer Requests

• Call Stack Mode for Last Branch Record (LBR)
 – Removes Call/Ret pairs to isolate call path that causes critical contentions
• Res_Programmed MSR
 – One-stop ‘In Use’ Status of Perfmon Fixed and GP Counters, PMI
 – Support for SW Virtualization/Sharing Protocol for Perfmon Resources
• Event updates, including:
 – Prefetch / Demand event clean-up
 – New Page Walker Load event for IA/EPT, instruction/data, data source
 – Page size info added to TLB events
• Intel® Transactional Synchronization Extension (Intel® TSX) support
 – Counters, LBRs, PEBS
Agenda

• Introduction
• Intel® Microarchitecture (Haswell): Core
• Haswell: Cache Hierarchy and Interconnects
 – Background
 – Haswell Innovations
• Haswell: Power Management
• Wrap Up
Cache, Interconnect, and System Agent: Background

- Haswell builds upon Sandy Bridge’s scalable interconnect and shared cache
 - Uni-directional ring with two stops for each core
 - Shared Last-Level Cache (LLC) scales with the number of cores
 - Processor graphics and system agent have separate ring stops
Cache, Interconnect, and System Agent: Haswell Innovations

- More access bandwidth per slice of shared LLC
 - New dedicated pipelines handle data and non-data accesses independently
- Improved load balancing to System Agent
 - Better credit-based management more efficiently shares resources
- Improved DRAM write throughput
 - Deeper pending queues: more decoupling, better scheduling
- Lower power, better efficiency
 - Focused effort to reduce idle and active power (next section)
Agenda

• Introduction
• Intel® Microarchitecture (Haswell): Core
• Haswell: Cache Hierarchy and Interconnects
• Haswell: Power Management
 – Maximizing power-limited performance
 – Maximizing battery life
• Wrap Up
Maximizing Power-Limited Performance

• Extended operating range
 – Power efficient features: better than voltage / frequency scaling
 – Continued focus on gating unused logic and low-power modes
 – Optimized manufacturing and circuits

• Independent frequency domains
 – Cores separated from LLC+Ring for fine-grained control
 – Power Control Unit dynamically allocates budget when power-limited
 – Prioritization based on run-time characteristics selects domain with the highest performance return
Maximizing Battery Life

• Deeper idle states, lower active power
 – Continued focus on turning off blocks that are not required. Example: C7
 ▪ All clocks stopped, voltage removed from the majority of the CPU
 ▪ C7 engaged even when display is active
 – Faster state transition times by ~25%

• Smarter low power states
 – New S0ix idle states with idle power approaching tablet CPUs
 – More C-state intelligence
 ▪ System software request
 ▪ Time to next timer event
 ▪ Latency requirements
 ▪ Past history
 ▪ Run time hints from devices

Microarchitecture, power management, and manufacturing combine for 20x reduction in idle power!
Agenda

- Introduction
- Intel® Microarchitecture (Haswell): Core
- Haswell: Cache Hierarchy and Interconnects
- Haswell: Power Management
- Wrap Up
Summary

• Haswell is the next Intel® “tock” microarchitecture, builds upon Sandy Bridge to deliver:
 – **Scalability** across broad range of domains and workloads
 – **Per core performance** for the vast majority of workloads
 – **Lower power** for better performance and smaller envelopes

• Developer-friendly features
 – Fundamental performance and power improvements for legacy workloads, including AVX
 – New instructions addressing key developer requests
 ▪ Intel® AVX2 with FMA and 256-bit integer vectors
 ▪ Intel® Bit Manipulation Instructions
 ▪ Intel® TSX for thread parallelism through lock elision

• Focus on power
 – Microarchitecture improvements: deeper idle states, lower active power
 – Finer grain control: more voltage and frequency domains, improved power sharing
Resources

- ISA documentation for Haswell New Instructions
 - Intel® Architecture Instruction Set Extensions Programming Reference (PDF).
 - Intel®64 and IA-32 Architectures Software Developer Manuals.
- Software Developer Emulator (SDE)
 - Emulate new instructions before hardware is available
 - Intel® Software Development Emulator (Intel® SDE) (PDF)
- Intel® Architecture Code Analyzer
 - Code analysis for new instructions before hardware is available
 - Intel® Architecture Code Analyzer
- Intel® Compiler
 - Version 12.1 supports most Haswell New Instructions
 - Version 13.0 supports Intel® TSX
 - Intel® C++ Compiler
- Intel® VTune™ analyzer
 - New release will support Haswell PerfMON shortly after shipment
Q&A
Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

- A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

- Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

- The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

- Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel's current plan of record product roadmaps.

- Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Go to: http://www.intel.com/products/processor_number.

- Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

- Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

- Haswell, Ivy Bridge, Sandy Bridge, Westmere, Nehalem, Merom, Yonah, Banias and other code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user.

- Intel, Core, VTune, Ultrabook, Sponsors of Tomorrow and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

- *Other names and brands may be claimed as the property of others.

- Copyright ©2012 Intel Corporation.
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE4 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804
Legal Disclaimer

- Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Core™ processors. Requires an Intel® HT Technology-enabled system. Consult your PC manufacturer. Performance will vary depending on the specific hardware and software used. For more information including details on which processors support Intel HT Technology, visit http://www.intel.com/info/hyperthreading.

- Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software to execute the instructions in the correct sequence. AES-NI is available on select Intel® processors. For availability, consult your reseller or system manufacturer. For more information, see Intel® Advanced Encryption Standard Instructions (AES-NI).

- Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance
Risk Factors

The above statements and any others in this document that refer to plans and expectations for the second quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,” “should” and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the company’s expectations. Demand could be different from Intel's expectations due to factors including changes in business and economic conditions, including supply constraints and other disruptions affecting customers; customer acceptance of Intel’s and competitors’ products; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Uncertainty in global economic and financial conditions poses a risk that consumers and businesses may defer purchases in response to negative financial events, which could negatively affect product demand and other related matters. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of Intel product introductions and the demand for and market acceptance of Intel’s products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel's response to such actions; and Intel's ability to respond quickly to technological developments and to incorporate new features into its products. Intel is in the process of transitioning to its next generation of products on 22nm process technology, and there could be execution and timing issues associated with these changes, including products defects and errata and lower than anticipated manufacturing yields. The gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product mix; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing, assembly/test and intangible assets. The majority of Intel’s non-marketable equity investment portfolio balance is concentrated in companies in the flash memory market segment, and declines in this market segment or changes in management’s plans with respect to Intel’s investments in this market segment could result in significant impairment charges, impacting restructuring charges as well as gains/losses on equity investments and interest and other. Intel’s results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. Intel’s results could be affected by the timing of closing of acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the litigation and regulatory matters described in Intel’s SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting Intel from manufacturing or selling one or more products, precluding particular business practices, impacting Intel’s ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings, including the company’s most recent Form 10-Q, Form 10-K and earnings release.

Rev. 5/4/12